126 lines
2.1 KiB
Org Mode
126 lines
2.1 KiB
Org Mode
#+PROPERTY: ANKI_DECK Default
|
|
|
|
* Fact
|
|
:PROPERTIES:
|
|
:ANKI_NOTE_TYPE: Cloze
|
|
:END:
|
|
|
|
** Text
|
|
|
|
Cards of this note wil be created in {{c1::Default::which deck ?}}
|
|
|
|
* Fact
|
|
:PROPERTIES:
|
|
:ANKI_DECK: English
|
|
:ANKI_NOTE_TYPE: Cloze
|
|
:END:
|
|
|
|
** Text
|
|
|
|
Cards of this note wil be created in {{c1::English::which deck ?}}
|
|
|
|
* The English Language
|
|
:PROPERTIES:
|
|
:ANKI_DECK: English
|
|
:END:
|
|
|
|
** Vocabulary
|
|
|
|
*** Item :vocab:idioms:
|
|
:PROPERTIES:
|
|
:ANKI_NOTE_TYPE: Basic (and reversed card)
|
|
:END:
|
|
|
|
**** Front
|
|
|
|
(it's) raining cats and dogs
|
|
|
|
**** Back
|
|
|
|
it's raining very hard
|
|
|
|
** Grammar :grammar:
|
|
|
|
*** Item
|
|
:PROPERTIES:
|
|
:ANKI_NOTE_TYPE: Basic
|
|
:END:
|
|
|
|
**** Front
|
|
|
|
说出名词从句的形式
|
|
|
|
**** Back
|
|
|
|
1) that + 一个完整的句子, that无实际意义
|
|
2) 由疑问句改装而成
|
|
|
|
* Computing
|
|
:PROPERTIES:
|
|
:ANKI_DECK: Computing
|
|
:END:
|
|
|
|
** Item :lisp:emacs:programming:
|
|
:PROPERTIES:
|
|
:ANKI_NOTE_TYPE: Basic
|
|
:END:
|
|
|
|
*** Front
|
|
|
|
How to trap errors in elisp ?
|
|
|
|
*** Back
|
|
|
|
#+BEGIN_EXPORT html
|
|
<div align="left">
|
|
#+END_EXPORT
|
|
|
|
#+BEGIN_SRC emacs-lisp
|
|
(condition-case the-error
|
|
;; the protected form
|
|
(progn
|
|
(do-something-dangerous)
|
|
(do-something-more-dangerous))
|
|
;; handlers
|
|
(error-symbol1 (handler1 the-error))
|
|
((error-symbol2 error-symbol3 (handler the-error))))
|
|
#+END_SRC
|
|
|
|
#+BEGIN_EXPORT html
|
|
</div>
|
|
#+END_EXPORT
|
|
|
|
* Math
|
|
:PROPERTIES:
|
|
:ANKI_DECK: Mathematics
|
|
:END:
|
|
|
|
** Item1
|
|
:PROPERTIES:
|
|
:ANKI_NOTE_TYPE: Cloze
|
|
:END:
|
|
|
|
*** Text
|
|
|
|
The dot product of two vectors is {{c1::$|\alpha| \cdot |\beta| \cos{\varphi}$}}
|
|
|
|
*** Extra
|
|
|
|
** Item2
|
|
:PROPERTIES:
|
|
:ANKI_NOTE_TYPE: Basic
|
|
:END:
|
|
|
|
*** Front
|
|
|
|
Given two vectors:
|
|
|
|
\begin{equation*}
|
|
\alpha = \{a_1, a_2, a_3\}, \beta = \{b_1, b_2, b_3\}
|
|
\end{equation*}
|
|
|
|
What's the result of $\alpha \cdot \beta$ ?
|
|
|
|
*** Back
|
|
|
|
\[a_1b_1 + a_2b_2 + a_3b_3\]
|