Update examples

This commit is contained in:
louie 2019-09-23 17:53:07 +08:00 committed by louie
parent b8f6986ab9
commit 5a19baefa9

View file

@ -1,32 +1,32 @@
#+PROPERTY: ANKI_DECK Default
* Fact
* Deck in file
:PROPERTIES:
:ANKI_NOTE_TYPE: Cloze
:END:
** Text
Cards of this note wil be created in {{c1::Default::which deck ?}}
Cards of this note will be created in {{c1::Default::which deck?}}
* Fact
* Deck in entry
:PROPERTIES:
:ANKI_DECK: English
:ANKI_DECK: Languages
:ANKI_NOTE_TYPE: Cloze
:END:
** Text
Cards of this note wil be created in {{c1::English::which deck ?}}
Cards of this note will be created in {{c1::Languages::which deck?}}
* The English Language
* Languages
:PROPERTIES:
:ANKI_DECK: English
:ANKI_DECK: Languages
:END:
** Vocabulary
*** Item :vocab:idioms:
*** Raining :vocab:idioms:english:
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic (and reversed card)
:END:
@ -39,35 +39,51 @@
it's raining very hard
** Grammar :grammar:
** Grammar :grammar:english:
*** Item
*** 名词从句
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic
:END:
**** Front
说出名词从句的形式
名词从句有哪些形式?
**** Back
1) that + 一个完整的句子, that无实际意义
1) That + 一个完整的句子, that无实际意义
2) 由疑问句改装而成
** Dialects
*** Cantonese
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic (and reversed card)
:ANKI_TAGS: dialect cantonese
:END:
**** Front
食咗饭未吖?
**** Back
吃过饭了没?
* Computing
:PROPERTIES:
:ANKI_DECK: Computing
:END:
** Item :lisp:emacs:programming:
** Emacs Lisp :lisp:emacs:programming:
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic
:END:
*** Front
How to trap errors in elisp ?
How to trap errors in emacs lisp?
*** Back
@ -95,32 +111,19 @@
:ANKI_DECK: Mathematics
:END:
** Item1
:PROPERTIES:
:ANKI_NOTE_TYPE: Cloze
:END:
*** Text
The dot product of two vectors is {{c1::$|\alpha| \cdot |\beta| \cos{\varphi}$}}
*** Extra
** Item2
** Dot product
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic
:END:
*** Front
Given two vectors:
How to calculate the dot product of two vectors:
\begin{equation*}
\alpha = \{a_1, a_2, a_3\}, \beta = \{b_1, b_2, b_3\}
\end{equation*}
What's the result of $\alpha \cdot \beta$ ?
*** Back
\[a_1b_1 + a_2b_2 + a_3b_3\]
\[\alpha \cdot \beta = a_1b_1 + a_2b_2 + a_3b_3\]