diff --git a/examples.org b/examples.org index 78093e8..8e06c70 100644 --- a/examples.org +++ b/examples.org @@ -1,32 +1,32 @@ #+PROPERTY: ANKI_DECK Default -* Fact +* Deck in file :PROPERTIES: :ANKI_NOTE_TYPE: Cloze :END: ** Text - Cards of this note wil be created in {{c1::Default::which deck ?}} + Cards of this note will be created in {{c1::Default::which deck?}} -* Fact +* Deck in entry :PROPERTIES: - :ANKI_DECK: English + :ANKI_DECK: Languages :ANKI_NOTE_TYPE: Cloze :END: ** Text - Cards of this note wil be created in {{c1::English::which deck ?}} + Cards of this note will be created in {{c1::Languages::which deck?}} -* The English Language +* Languages :PROPERTIES: - :ANKI_DECK: English + :ANKI_DECK: Languages :END: ** Vocabulary -*** Item :vocab:idioms: +*** Raining :vocab:idioms:english: :PROPERTIES: :ANKI_NOTE_TYPE: Basic (and reversed card) :END: @@ -39,35 +39,51 @@ it's raining very hard -** Grammar :grammar: +** Grammar :grammar:english: -*** Item +*** 名词从句 :PROPERTIES: :ANKI_NOTE_TYPE: Basic :END: **** Front - 说出名词从句的形式 + 名词从句有哪些形式? **** Back - 1) that + 一个完整的句子, that无实际意义 + 1) That + 一个完整的句子, that无实际意义 2) 由疑问句改装而成 +** Dialects + +*** Cantonese + :PROPERTIES: + :ANKI_NOTE_TYPE: Basic (and reversed card) + :ANKI_TAGS: dialect cantonese + :END: + +**** Front + + 食咗饭未吖? + +**** Back + + 吃过饭了没? + * Computing :PROPERTIES: :ANKI_DECK: Computing :END: -** Item :lisp:emacs:programming: +** Emacs Lisp :lisp:emacs:programming: :PROPERTIES: :ANKI_NOTE_TYPE: Basic :END: *** Front - How to trap errors in elisp ? + How to trap errors in emacs lisp? *** Back @@ -95,32 +111,19 @@ :ANKI_DECK: Mathematics :END: -** Item1 - :PROPERTIES: - :ANKI_NOTE_TYPE: Cloze - :END: - -*** Text - - The dot product of two vectors is {{c1::$|\alpha| \cdot |\beta| \cos{\varphi}$}} - -*** Extra - -** Item2 +** Dot product :PROPERTIES: :ANKI_NOTE_TYPE: Basic :END: *** Front - Given two vectors: + How to calculate the dot product of two vectors: \begin{equation*} \alpha = \{a_1, a_2, a_3\}, \beta = \{b_1, b_2, b_3\} \end{equation*} - What's the result of $\alpha \cdot \beta$ ? - *** Back - \[a_1b_1 + a_2b_2 + a_3b_3\] + \[\alpha \cdot \beta = a_1b_1 + a_2b_2 + a_3b_3\]