miniflux/vendor/google.golang.org/appengine/datastore/key.go
2018-07-06 21:18:14 -07:00

396 lines
10 KiB
Go

// Copyright 2011 Google Inc. All rights reserved.
// Use of this source code is governed by the Apache 2.0
// license that can be found in the LICENSE file.
package datastore
import (
"bytes"
"encoding/base64"
"encoding/gob"
"errors"
"fmt"
"strconv"
"strings"
"github.com/golang/protobuf/proto"
"golang.org/x/net/context"
"google.golang.org/appengine/internal"
pb "google.golang.org/appengine/internal/datastore"
)
type KeyRangeCollisionError struct {
start int64
end int64
}
func (e *KeyRangeCollisionError) Error() string {
return fmt.Sprintf("datastore: Collision when attempting to allocate range [%d, %d]",
e.start, e.end)
}
type KeyRangeContentionError struct {
start int64
end int64
}
func (e *KeyRangeContentionError) Error() string {
return fmt.Sprintf("datastore: Contention when attempting to allocate range [%d, %d]",
e.start, e.end)
}
// Key represents the datastore key for a stored entity, and is immutable.
type Key struct {
kind string
stringID string
intID int64
parent *Key
appID string
namespace string
}
// Kind returns the key's kind (also known as entity type).
func (k *Key) Kind() string {
return k.kind
}
// StringID returns the key's string ID (also known as an entity name or key
// name), which may be "".
func (k *Key) StringID() string {
return k.stringID
}
// IntID returns the key's integer ID, which may be 0.
func (k *Key) IntID() int64 {
return k.intID
}
// Parent returns the key's parent key, which may be nil.
func (k *Key) Parent() *Key {
return k.parent
}
// AppID returns the key's application ID.
func (k *Key) AppID() string {
return k.appID
}
// Namespace returns the key's namespace.
func (k *Key) Namespace() string {
return k.namespace
}
// Incomplete returns whether the key does not refer to a stored entity.
// In particular, whether the key has a zero StringID and a zero IntID.
func (k *Key) Incomplete() bool {
return k.stringID == "" && k.intID == 0
}
// valid returns whether the key is valid.
func (k *Key) valid() bool {
if k == nil {
return false
}
for ; k != nil; k = k.parent {
if k.kind == "" || k.appID == "" {
return false
}
if k.stringID != "" && k.intID != 0 {
return false
}
if k.parent != nil {
if k.parent.Incomplete() {
return false
}
if k.parent.appID != k.appID || k.parent.namespace != k.namespace {
return false
}
}
}
return true
}
// Equal returns whether two keys are equal.
func (k *Key) Equal(o *Key) bool {
for k != nil && o != nil {
if k.kind != o.kind || k.stringID != o.stringID || k.intID != o.intID || k.appID != o.appID || k.namespace != o.namespace {
return false
}
k, o = k.parent, o.parent
}
return k == o
}
// root returns the furthest ancestor of a key, which may be itself.
func (k *Key) root() *Key {
for k.parent != nil {
k = k.parent
}
return k
}
// marshal marshals the key's string representation to the buffer.
func (k *Key) marshal(b *bytes.Buffer) {
if k.parent != nil {
k.parent.marshal(b)
}
b.WriteByte('/')
b.WriteString(k.kind)
b.WriteByte(',')
if k.stringID != "" {
b.WriteString(k.stringID)
} else {
b.WriteString(strconv.FormatInt(k.intID, 10))
}
}
// String returns a string representation of the key.
func (k *Key) String() string {
if k == nil {
return ""
}
b := bytes.NewBuffer(make([]byte, 0, 512))
k.marshal(b)
return b.String()
}
type gobKey struct {
Kind string
StringID string
IntID int64
Parent *gobKey
AppID string
Namespace string
}
func keyToGobKey(k *Key) *gobKey {
if k == nil {
return nil
}
return &gobKey{
Kind: k.kind,
StringID: k.stringID,
IntID: k.intID,
Parent: keyToGobKey(k.parent),
AppID: k.appID,
Namespace: k.namespace,
}
}
func gobKeyToKey(gk *gobKey) *Key {
if gk == nil {
return nil
}
return &Key{
kind: gk.Kind,
stringID: gk.StringID,
intID: gk.IntID,
parent: gobKeyToKey(gk.Parent),
appID: gk.AppID,
namespace: gk.Namespace,
}
}
func (k *Key) GobEncode() ([]byte, error) {
buf := new(bytes.Buffer)
if err := gob.NewEncoder(buf).Encode(keyToGobKey(k)); err != nil {
return nil, err
}
return buf.Bytes(), nil
}
func (k *Key) GobDecode(buf []byte) error {
gk := new(gobKey)
if err := gob.NewDecoder(bytes.NewBuffer(buf)).Decode(gk); err != nil {
return err
}
*k = *gobKeyToKey(gk)
return nil
}
func (k *Key) MarshalJSON() ([]byte, error) {
return []byte(`"` + k.Encode() + `"`), nil
}
func (k *Key) UnmarshalJSON(buf []byte) error {
if len(buf) < 2 || buf[0] != '"' || buf[len(buf)-1] != '"' {
return errors.New("datastore: bad JSON key")
}
k2, err := DecodeKey(string(buf[1 : len(buf)-1]))
if err != nil {
return err
}
*k = *k2
return nil
}
// Encode returns an opaque representation of the key
// suitable for use in HTML and URLs.
// This is compatible with the Python and Java runtimes.
func (k *Key) Encode() string {
ref := keyToProto("", k)
b, err := proto.Marshal(ref)
if err != nil {
panic(err)
}
// Trailing padding is stripped.
return strings.TrimRight(base64.URLEncoding.EncodeToString(b), "=")
}
// DecodeKey decodes a key from the opaque representation returned by Encode.
func DecodeKey(encoded string) (*Key, error) {
// Re-add padding.
if m := len(encoded) % 4; m != 0 {
encoded += strings.Repeat("=", 4-m)
}
b, err := base64.URLEncoding.DecodeString(encoded)
if err != nil {
return nil, err
}
ref := new(pb.Reference)
if err := proto.Unmarshal(b, ref); err != nil {
return nil, err
}
return protoToKey(ref)
}
// NewIncompleteKey creates a new incomplete key.
// kind cannot be empty.
func NewIncompleteKey(c context.Context, kind string, parent *Key) *Key {
return NewKey(c, kind, "", 0, parent)
}
// NewKey creates a new key.
// kind cannot be empty.
// Either one or both of stringID and intID must be zero. If both are zero,
// the key returned is incomplete.
// parent must either be a complete key or nil.
func NewKey(c context.Context, kind, stringID string, intID int64, parent *Key) *Key {
// If there's a parent key, use its namespace.
// Otherwise, use any namespace attached to the context.
var namespace string
if parent != nil {
namespace = parent.namespace
} else {
namespace = internal.NamespaceFromContext(c)
}
return &Key{
kind: kind,
stringID: stringID,
intID: intID,
parent: parent,
appID: internal.FullyQualifiedAppID(c),
namespace: namespace,
}
}
// AllocateIDs returns a range of n integer IDs with the given kind and parent
// combination. kind cannot be empty; parent may be nil. The IDs in the range
// returned will not be used by the datastore's automatic ID sequence generator
// and may be used with NewKey without conflict.
//
// The range is inclusive at the low end and exclusive at the high end. In
// other words, valid intIDs x satisfy low <= x && x < high.
//
// If no error is returned, low + n == high.
func AllocateIDs(c context.Context, kind string, parent *Key, n int) (low, high int64, err error) {
if kind == "" {
return 0, 0, errors.New("datastore: AllocateIDs given an empty kind")
}
if n < 0 {
return 0, 0, fmt.Errorf("datastore: AllocateIDs given a negative count: %d", n)
}
if n == 0 {
return 0, 0, nil
}
req := &pb.AllocateIdsRequest{
ModelKey: keyToProto("", NewIncompleteKey(c, kind, parent)),
Size: proto.Int64(int64(n)),
}
res := &pb.AllocateIdsResponse{}
if err := internal.Call(c, "datastore_v3", "AllocateIds", req, res); err != nil {
return 0, 0, err
}
// The protobuf is inclusive at both ends. Idiomatic Go (e.g. slices, for loops)
// is inclusive at the low end and exclusive at the high end, so we add 1.
low = res.GetStart()
high = res.GetEnd() + 1
if low+int64(n) != high {
return 0, 0, fmt.Errorf("datastore: internal error: could not allocate %d IDs", n)
}
return low, high, nil
}
// AllocateIDRange allocates a range of IDs with specific endpoints.
// The range is inclusive at both the low and high end. Once these IDs have been
// allocated, you can manually assign them to newly created entities.
//
// The Datastore's automatic ID allocator never assigns a key that has already
// been allocated (either through automatic ID allocation or through an explicit
// AllocateIDs call). As a result, entities written to the given key range will
// never be overwritten. However, writing entities with manually assigned keys in
// this range may overwrite existing entities (or new entities written by a separate
// request), depending on the error returned.
//
// Use this only if you have an existing numeric ID range that you want to reserve
// (for example, bulk loading entities that already have IDs). If you don't care
// about which IDs you receive, use AllocateIDs instead.
//
// AllocateIDRange returns nil if the range is successfully allocated. If one or more
// entities with an ID in the given range already exist, it returns a KeyRangeCollisionError.
// If the Datastore has already cached IDs in this range (e.g. from a previous call to
// AllocateIDRange), it returns a KeyRangeContentionError. Errors of other types indicate
// problems with arguments or an error returned directly from the Datastore.
func AllocateIDRange(c context.Context, kind string, parent *Key, start, end int64) (err error) {
if kind == "" {
return errors.New("datastore: AllocateIDRange given an empty kind")
}
if start < 1 || end < 1 {
return errors.New("datastore: AllocateIDRange start and end must both be greater than 0")
}
if start > end {
return errors.New("datastore: AllocateIDRange start must be before end")
}
req := &pb.AllocateIdsRequest{
ModelKey: keyToProto("", NewIncompleteKey(c, kind, parent)),
Max: proto.Int64(end),
}
res := &pb.AllocateIdsResponse{}
if err := internal.Call(c, "datastore_v3", "AllocateIds", req, res); err != nil {
return err
}
// Check for collisions, i.e. existing entities with IDs in this range.
// We could do this before the allocation, but we'd still have to do it
// afterward as well to catch the race condition where an entity is inserted
// after that initial check but before the allocation. Skip the up-front check
// and just do it once.
q := NewQuery(kind).Filter("__key__ >=", NewKey(c, kind, "", start, parent)).
Filter("__key__ <=", NewKey(c, kind, "", end, parent)).KeysOnly().Limit(1)
keys, err := q.GetAll(c, nil)
if err != nil {
return err
}
if len(keys) != 0 {
return &KeyRangeCollisionError{start: start, end: end}
}
// Check for a race condition, i.e. cases where the datastore may have
// cached ID batches that contain IDs in this range.
if start < res.GetStart() {
return &KeyRangeContentionError{start: start, end: end}
}
return nil
}