miniflux/vendor/golang.org/x/text/internal/colltab/numeric.go

237 lines
7 KiB
Go
Raw Normal View History

2017-11-20 06:10:04 +01:00
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package colltab
import (
"unicode"
"unicode/utf8"
)
// NewNumericWeighter wraps w to replace individual digits to sort based on their
// numeric value.
//
// Weighter w must have a free primary weight after the primary weight for 9.
// If this is not the case, numeric value will sort at the same primary level
// as the first primary sorting after 9.
func NewNumericWeighter(w Weighter) Weighter {
getElem := func(s string) Elem {
elems, _ := w.AppendNextString(nil, s)
return elems[0]
}
nine := getElem("9")
// Numbers should order before zero, but the DUCET has no room for this.
// TODO: move before zero once we use fractional collation elements.
ns, _ := MakeElem(nine.Primary()+1, nine.Secondary(), int(nine.Tertiary()), 0)
return &numericWeighter{
Weighter: w,
// We assume that w sorts digits of different kinds in order of numeric
// value and that the tertiary weight order is preserved.
//
// TODO: evaluate whether it is worth basing the ranges on the Elem
// encoding itself once the move to fractional weights is complete.
zero: getElem("0"),
zeroSpecialLo: getElem(""), // U+FF10 FULLWIDTH DIGIT ZERO
zeroSpecialHi: getElem("₀"), // U+2080 SUBSCRIPT ZERO
nine: nine,
nineSpecialHi: getElem("₉"), // U+2089 SUBSCRIPT NINE
numberStart: ns,
}
}
// A numericWeighter translates a stream of digits into a stream of weights
// representing the numeric value.
type numericWeighter struct {
Weighter
// The Elems below all demarcate boundaries of specific ranges. With the
// current element encoding digits are in two ranges: normal (default
// tertiary value) and special. For most languages, digits have collation
// elements in the normal range.
//
// Note: the range tests are very specific for the element encoding used by
// this implementation. The tests in collate_test.go are designed to fail
// if this code is not updated when an encoding has changed.
zero Elem // normal digit zero
zeroSpecialLo Elem // special digit zero, low tertiary value
zeroSpecialHi Elem // special digit zero, high tertiary value
nine Elem // normal digit nine
nineSpecialHi Elem // special digit nine
numberStart Elem
}
// AppendNext calls the namesake of the underlying weigher, but replaces single
// digits with weights representing their value.
func (nw *numericWeighter) AppendNext(buf []Elem, s []byte) (ce []Elem, n int) {
ce, n = nw.Weighter.AppendNext(buf, s)
nc := numberConverter{
elems: buf,
w: nw,
b: s,
}
isZero, ok := nc.checkNextDigit(ce)
if !ok {
return ce, n
}
// ce might have been grown already, so take it instead of buf.
nc.init(ce, len(buf), isZero)
for n < len(s) {
ce, sz := nw.Weighter.AppendNext(nc.elems, s[n:])
nc.b = s
n += sz
if !nc.update(ce) {
break
}
}
return nc.result(), n
}
// AppendNextString calls the namesake of the underlying weigher, but replaces
// single digits with weights representing their value.
func (nw *numericWeighter) AppendNextString(buf []Elem, s string) (ce []Elem, n int) {
ce, n = nw.Weighter.AppendNextString(buf, s)
nc := numberConverter{
elems: buf,
w: nw,
s: s,
}
isZero, ok := nc.checkNextDigit(ce)
if !ok {
return ce, n
}
nc.init(ce, len(buf), isZero)
for n < len(s) {
ce, sz := nw.Weighter.AppendNextString(nc.elems, s[n:])
nc.s = s
n += sz
if !nc.update(ce) {
break
}
}
return nc.result(), n
}
type numberConverter struct {
w *numericWeighter
elems []Elem
nDigits int
lenIndex int
s string // set if the input was of type string
b []byte // set if the input was of type []byte
}
// init completes initialization of a numberConverter and prepares it for adding
// more digits. elems is assumed to have a digit starting at oldLen.
func (nc *numberConverter) init(elems []Elem, oldLen int, isZero bool) {
// Insert a marker indicating the start of a number and and a placeholder
// for the number of digits.
if isZero {
elems = append(elems[:oldLen], nc.w.numberStart, 0)
} else {
elems = append(elems, 0, 0)
copy(elems[oldLen+2:], elems[oldLen:])
elems[oldLen] = nc.w.numberStart
elems[oldLen+1] = 0
nc.nDigits = 1
}
nc.elems = elems
nc.lenIndex = oldLen + 1
}
// checkNextDigit reports whether bufNew adds a single digit relative to the old
// buffer. If it does, it also reports whether this digit is zero.
func (nc *numberConverter) checkNextDigit(bufNew []Elem) (isZero, ok bool) {
if len(nc.elems) >= len(bufNew) {
return false, false
}
e := bufNew[len(nc.elems)]
if e < nc.w.zeroSpecialLo || nc.w.nine < e {
// Not a number.
return false, false
}
if e < nc.w.zero {
if e > nc.w.nineSpecialHi {
// Not a number.
return false, false
}
if !nc.isDigit() {
return false, false
}
isZero = e <= nc.w.zeroSpecialHi
} else {
// This is the common case if we encounter a digit.
isZero = e == nc.w.zero
}
// Test the remaining added collation elements have a zero primary value.
if n := len(bufNew) - len(nc.elems); n > 1 {
for i := len(nc.elems) + 1; i < len(bufNew); i++ {
if bufNew[i].Primary() != 0 {
return false, false
}
}
// In some rare cases, collation elements will encode runes in
// unicode.No as a digit. For example Ethiopic digits (U+1369 - U+1371)
// are not in Nd. Also some digits that clearly belong in unicode.No,
// like U+0C78 TELUGU FRACTION DIGIT ZERO FOR ODD POWERS OF FOUR, have
// collation elements indistinguishable from normal digits.
// Unfortunately, this means we need to make this check for nearly all
// non-Latin digits.
//
// TODO: check the performance impact and find something better if it is
// an issue.
if !nc.isDigit() {
return false, false
}
}
return isZero, true
}
func (nc *numberConverter) isDigit() bool {
if nc.b != nil {
r, _ := utf8.DecodeRune(nc.b)
return unicode.In(r, unicode.Nd)
}
r, _ := utf8.DecodeRuneInString(nc.s)
return unicode.In(r, unicode.Nd)
}
// We currently support a maximum of about 2M digits (the number of primary
// values). Such numbers will compare correctly against small numbers, but their
// comparison against other large numbers is undefined.
//
// TODO: define a proper fallback, such as comparing large numbers textually or
// actually allowing numbers of unlimited length.
//
// TODO: cap this to a lower number (like 100) and maybe allow a larger number
// in an option?
const maxDigits = 1<<maxPrimaryBits - 1
func (nc *numberConverter) update(elems []Elem) bool {
isZero, ok := nc.checkNextDigit(elems)
if nc.nDigits == 0 && isZero {
return true
}
nc.elems = elems
if !ok {
return false
}
nc.nDigits++
return nc.nDigits < maxDigits
}
// result fills in the length element for the digit sequence and returns the
// completed collation elements.
func (nc *numberConverter) result() []Elem {
e, _ := MakeElem(nc.nDigits, defaultSecondary, defaultTertiary, 0)
nc.elems[nc.lenIndex] = e
return nc.elems
}