mirror of
https://git.savannah.gnu.org/git/guix.git
synced 2025-01-22 18:26:43 +01:00
gnu: Add python-mofapy2.
* gnu/packages/bioinformatics.scm (python-mofapy2): New variable. Change-Id: Ide92878258511b3daf4e56d5faa94d190fdee62f Signed-off-by: Ricardo Wurmus <rekado@elephly.net>
This commit is contained in:
parent
b77491909b
commit
58ead4baf9
1 changed files with 44 additions and 0 deletions
|
@ -4491,6 +4491,50 @@ (define-public python-mudata
|
|||
omics data.")
|
||||
(license license:bsd-3)))
|
||||
|
||||
(define-public python-mofapy2
|
||||
(package
|
||||
(name "python-mofapy2")
|
||||
(version "0.7.1")
|
||||
(source
|
||||
(origin
|
||||
;; The tarball from PyPi doesn't include tests.
|
||||
(method git-fetch)
|
||||
(uri (git-reference
|
||||
(url "https://github.com/bioFAM/mofapy2")
|
||||
(commit (string-append "v" version))))
|
||||
(file-name (git-file-name name version))
|
||||
(sha256
|
||||
(base32
|
||||
"0ahhnqk6gjrhyq286mrd5n7mxcv8l6040ffsawbjx9maqx8wbam0"))))
|
||||
(build-system pyproject-build-system)
|
||||
(arguments
|
||||
(list
|
||||
#:test-flags
|
||||
;; cupy is an optional dependency, which
|
||||
;; itself has nonfree dependencies (CUDA)
|
||||
'(list "--ignore=mofapy2/notebooks/test_cupy.py")))
|
||||
(propagated-inputs (list python-anndata
|
||||
python-h5py
|
||||
python-numpy
|
||||
python-pandas
|
||||
python-scikit-learn
|
||||
python-scipy))
|
||||
(native-inputs (list python-poetry-core
|
||||
python-pytest))
|
||||
(home-page "https://biofam.github.io/MOFA2/")
|
||||
(synopsis "Multi-omics factor analysis")
|
||||
(description "MOFA is a factor analysis model that provides a general
|
||||
framework for the integration of multi-omic data sets in an unsupervised
|
||||
fashion. Intuitively, MOFA can be viewed as a versatile and statistically
|
||||
rigorous generalization of principal component analysis to multi-omics data.
|
||||
Given several data matrices with measurements of multiple -omics data types on
|
||||
the same or on overlapping sets of samples, MOFA infers an interpretable
|
||||
low-dimensional representation in terms of a few latent factors. These learnt
|
||||
factors represent the driving sources of variation across data modalities,
|
||||
thus facilitating the identification of cellular states or disease
|
||||
subgroups.")
|
||||
(license license:lgpl3)))
|
||||
|
||||
(define-public python-pyega3
|
||||
(deprecated-package "python-pyega3" python-ega-download-client))
|
||||
|
||||
|
|
Loading…
Reference in a new issue