#+PROPERTY: ANKI_DECK Default * Deck in file :PROPERTIES: :ANKI_NOTE_TYPE: Cloze :END: ** Text Cards of this note will be created in {{c1::Default::which deck?}} * Deck in entry :PROPERTIES: :ANKI_DECK: Languages :ANKI_NOTE_TYPE: Cloze :END: ** Text Cards of this note will be created in {{c1::Languages::which deck?}} * Raw fields :PROPERTIES: :ANKI_NOTE_TYPE: Basic :END: ** Front How to send the content of a field or fields to Anki as is? ** Back :PROPERTIES: :ANKI_EXPORTER: raw :END: With property :ANKI_EXPORTER: raw, content of the field will be sent to Anki unprocessed. You can use whatever Anki supports, like HTML tags.

This property is retrieved with inheritance, meaning that it can be set in any ancestor entries or at the top of the file with #+PROPERTY: ANKI_EXPORTER raw, it's also possible to override an outer level raw exporter with :ANKI_EXPORTER: default. * Languages :PROPERTIES: :ANKI_DECK: Languages :END: ** Vocabulary *** Raining :vocab:idioms:english: :PROPERTIES: :ANKI_NOTE_TYPE: Basic (and reversed card) :END: **** Front (it's) raining cats and dogs **** Back it's raining very hard ** Grammar :grammar:english: *** 名词从句 :PROPERTIES: :ANKI_NOTE_TYPE: Basic :END: **** Front 名词从句有哪些形式? **** Back 1) That + 一个完整的句子, that无实际意义 2) 由疑问句改装而成 ** Dialects *** Cantonese :PROPERTIES: :ANKI_NOTE_TYPE: Basic (and reversed card) :ANKI_TAGS: dialect cantonese :END: **** Front 食咗饭未吖? **** Back 吃过饭了没? * Computing :PROPERTIES: :ANKI_DECK: Computing :END: ** Emacs Lisp :lisp:emacs:programming: :PROPERTIES: :ANKI_NOTE_TYPE: Basic :END: *** Front How to trap errors in emacs lisp? *** Back #+BEGIN_EXPORT html
#+END_EXPORT #+BEGIN_SRC emacs-lisp (condition-case the-error ;; the protected form (progn (do-something-dangerous) (do-something-more-dangerous)) ;; handlers (error-symbol1 (handler1 the-error)) ((error-symbol2 error-symbol3 (handler the-error)))) #+END_SRC #+BEGIN_EXPORT html
#+END_EXPORT * Math :PROPERTIES: :ANKI_DECK: Mathematics :END: ** Dot product :PROPERTIES: :ANKI_NOTE_TYPE: Basic :END: *** Front How to calculate the dot product of two vectors: \begin{equation*} \alpha = \{a_1, a_2, a_3\}, \beta = \{b_1, b_2, b_3\} \end{equation*} *** Back \[\alpha \cdot \beta = a_1b_1 + a_2b_2 + a_3b_3\]