Rework demo

This commit is contained in:
louie 2018-01-07 15:21:24 +08:00
parent b5c91bc390
commit 393b8fdc8f
2 changed files with 57 additions and 56 deletions

BIN
demo.gif

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 MiB

After

Width:  |  Height:  |  Size: 26 MiB

View file

@ -1,62 +1,63 @@
* English :deck:
** Vocabulary
*** Item :note:
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic (and reversed card)
:ANKI_TAGS: vocab idioms
:END:
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic (and reversed card)
:ANKI_TAGS: vocab idioms
:END:
**** Front
(it's) raining cats and dogs
(it's) raining cats and dogs
**** Back
it's raining very hard
** Grammar
*** Item :note:
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic
:ANKI_TAGS: grammar
:END:
**** Front
列举最基本的句型
**** Back
#+BEGIN_EXPORT html
<div align="left">
#+END_EXPORT
- S + V
- S + V + O
- S + V + C
- S + V + O + O
- S + V + O + C
#+BEGIN_EXPORT html
</div>
#+END_EXPORT
* Math :deck:
** Fact :note:
:PROPERTIES:
:ANKI_NOTE_TYPE: Cloze
:END:
*** Text
The square function is {{c1::$f(x) = x^2$}}
* Computer Science :deck:
it's raining very hard
* Computing :deck:
** Item :note:
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic
:ANKI_TAGS: lisp emacs programming
:END:
:PROPERTIES:
:ANKI_NOTE_TYPE: Basic
:ANKI_TAGS: lisp emacs programming
:END:
*** Front
How to trap errors in elisp ?
How to trap errors in elisp ?
*** Back
#+BEGIN_EXPORT html
<div align="left">
#+END_EXPORT
#+BEGIN_SRC emacs-lisp
#+BEGIN_EXPORT html
<div align="left">
#+END_EXPORT
#+BEGIN_SRC emacs-lisp
(condition-case the-error
;; protected form
;; the protected form
(progn
(do-something-dangerous))
;; error handlers
(error-symbol-1 (handler1 err))
((error-symbol-2 error-symbol-3) (handler2 err)))
#+END_SRC
#+BEGIN_EXPORT html
</div>
#+END_EXPORT
(do-something-dangerous)
(do-something-more-dangerous))
;; handlers
(error-symbol1 (handler1 the-error))
((error-symbol2 error-symbol3 (handler the-error))))
#+END_SRC
#+BEGIN_EXPORT html
</div>
#+END_EXPORT
* Mathematics :deck:
** Item :note:
:PROPERTIES:
:ANKI_NOTE_TYPE: Cloze
:END:
*** Text
The dot product of two vectors is {{c1::$|\alpha| \cdot |\beta| \cos{\varphi}$}}
*** Extra